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Fig. 3. Variation of /S1; with respect to the eccentricity.

10 GHz and 15 GHz. Notice that strong reflections are observed as
the eccentricity becomes comparable to the microstrip line widths.

V. CONCLUSIONS

A frequency-dependent analysis of the shielded microstrip asym-
metric step discontinuity has been presented. The asymmetric nature
of the discontinuity requires the investigation of the spectrum of both
odd and even hybrid modes. Numerical results have been presented
and the effect of the eccentricity on the scattering parameters has been
depicted. In principal the same method can be employed to treat other
types of asymmetric discontinuity problems.
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Semi-Discrete Finite Element Analysis of Zero-Thickness
Inductive Strips in a Rectangular Waveguide

Devin Crawford and Marat Davidovitz

Abstract—A semi-discrete finite element method is applied to determine
the network parameters for zero-thickness inductive discontinuities in a
rectangular guide. The solution obtained is computationally efficient and
is applicable under multi-mode conditions. Moreover, after obtaining the
solution for a given geometry at a specific frequency, further frequency
analysis for the same geometry requires only nominal additional recalcu-
lation. Convergence properties of the solution are studied and comparison
with published data is carried out to verify the solution accuracy.

I. INTRODUCTION

A variant of the FEM, the Semi-Discrete Finite Element Method
(SDFEM) utilizes the properties of the FEM in one plane of the
domain, while the solution along the remaining dimension is found
analytically. Thus, the computational burden associated with this
method is considerably smaller than that for a fully-discrete FEM
solution. Moreover, in the framework of the SDFEM, radiation
condition can be rigorously applied along certain directions in a
Cartesian coordinate system. Therefore, the SDFEM is suited to
probiems involving discontinuities in a plane. Here we examine
the problem of zero-thickness inductive discontinuities in a wave-
guide. This problem has been extensively studied in the past [1], [2],
[3], {41, [7], and therefore is a good model problem with which to
verify the proposed method, as well as examine its characteristics in
detail.

Section II of this paper deals with the theoretical formulation of
the problem, based on the scalar Helmholtz equation for the TE field.
In Section III the numerical issues of discretization, convergence and
execution time are examined. In section IV, we compare our resuits
with published data [7] and finally, Section V contains conclusions
and suggestions for further work.

II. FORMULATION OF THE PROBLEM

Consider a general, infinitesimally thin inductive diaphragm shown
in Fig. 1. It is assumed that the TE1o mode is incident from z < 0. It
is well-known [5] that for this type of discontinuity only higher-order
TE..o modes are excited. Therefore the scattered TE field satisfies the
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Fig. 1.

Description of the problem geometry.

following scalar Helmholtz equation

9% o
(8? + 5;5)45(3% z)
+ B¢z, 2) = jupdy(2)8(2) (1)

where ¢(z, z) denotes.the y component of the reflected electric field,
and J, (x) is the current induced on the discontinuity by the incident
wave.

The finite element method is used to discretize the field equations in
the plane transverse to the direction of propagation in the waveguide.
Since the field is independent of y, only 1-dimensional discretization
along the x axis is necessary. The dependence of the solution along
the z direction will be determined analytically.

The following boundary conditions will be applied to the Helmholtz
equation at various stages of the formulation

¢(z,z) =02 =0,a 2)
. (T
oz, z) = —sin <7>V(x,z) €S 3)

where § = U;S;, and 8; is the surface of the ith conducting strip.
Equation (3) simply imposes the condition requiring the sum of the
incident and reflected fields to vanish on the diaphragm.
Multiplying (1) by a weight function ¢ (z) and integrating over the
cross-section, (1) can be expressed in its weak form [8] [9] as follows

/Oa [(58;—2 + g;) o(z, 2) + k2¢(:c,z)}
v do = [ Jond,(@)5()6(0) da @

Equation (4) will serve as the basis for construction of the
SDFEM solution. For reasons that will become apparent shortly, it is
convenient to alter (4) through integration by parts

©[3%¢  949¢ | o
/0 [W - %5;4-]4 ¢1/):|

. 96
- dz + B—Ew

a

a
:/ Jwpdy(x)6(z)y dz= )
0 0
In the finite element nomenclature this €quation constitutes the weak,
symmetric form of the original differential formulation. The name
stems from the symmetry between the unknown ¢ and the weight
function ¢ in the discretized portion of the domain.

The finite element solution can be written in terms of a set of basis
functions {¢,{x),p = 0, N + 1} which span the z-domain. The
basis functions are defined piecewise by low-order polynomials over
a mesh, and are normalized so that ¢,(z4) = 6,4, Where 6,4 is the
Kronecker delta, and x4 is the x position corresponding to node q.

An approximate solution can be expressed in terms of the basis
functions as
N41
$(x,2) = Y vg(2)dq(x) = $2)v(2) ©)
g=0
where
vq(z)-value of the FEM. solution at (x4, 2),
¢4(xz)-the g-th basis function,
#(z)-the vector whose elements are ¢q(x),
v{z)-the vector whose elements are v,(z), and tilda denotes
transposition.
We will also take

Y(2) = ¢q(2),p =0,1,2,---, N + 1 (D
Application of the essential boundary conditions of (2) requires that
vo(z) = vn4a(z) = 0

eliminating the term (9¢/32)¢ |8 in (5).
Substitution of expressions (6) and (7) into (5) yields the following
matrix equation

dz2?

B (d%(z) + k%@)) — Av(z) = 6(2)s ®)

where A and B are N x N matrices, and s is a vector whose
elements are defined as follows:

o dg, do
= [ T ©)
bpy = / 6p(2)y (x) dx (10)
0
Sp:/ Jopdy(x)dy(z) dz (11
0

The N differential equations in the matrix equation (8) must
now be decoupled. In order to accomplish this task, let the linear
transformation matrix 7" be defined by

v(z) =TV (2) (12)

where V' denotes the transformed solution.
In order to decouple the equations, T must satisfy the generalized
eigenvalue problem

AT = BTK (13)

where the diagonal matrix K has the eigenvalue entries A,. Trans-
forming equation (8) to the principle axes yields the following N
uncoupled differential equations

>V (z)
dz?

+ KV (z) - KV(z) = 6(2)% (14)

where
s=T 'B7's (15)

and k? = w?pe.
After solving the equations and applying the radiation conditions
at z & +oo, we can express V(z) as

V=223 (16)
where Z(z) is a diagonal matrix with elements
~ _e"‘fp’gl
pr = '—2‘—— (17)
Y
and
Yo = /Ay — K2 (18)
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If the transformation matrix 7' is normalized such that TBT = I,
then from (12), (15) and (16) it follows that

v(2)

In order to express v(z) in a simple form, let Z(z) = TZ(z)T.
The boundary conditions stated in (3) can now be applied to solve
for s.

The boundary condition of eq. (3) is applied by defining the vector
¢o that has clements

Gop (9, 0) = { sin (7 /a)

=TZ()T 'B 's =TZ(:)Ts 19)

ife, €8
ife, 38 20)

Applying (6) and (19), and the definitions of Z(z) and ¢, to (3)
we see that

@1

which is actually a matrix equation in M unknowns, where M. is the
number of nodes in S. The vector s can be determined by extracting
from Z(0) the rows corresponding to the non-zero elements of ¢,
and solving for the non-zero elements of s. Once s is found, the
value of the reflected field at any point (z, z) can be determined by
substituting s into (6) and (19)..

The reflection coefficient is extracted by projecting the finite
element solution onto the TE;; mode, yielding

. /ans(ax,o) sin (f’?}) dz
/0 sin? (F—a{) dx

Finally, we wish to model the discontinuity in terms of a lumped
element, namely, as an inductor. From transmission line theory, the
normalized susceptance is given by

= 2T

The current on the strips can also be found by first expressing it
as a linear combination of the same basis functions that were used
to define the solution, that is

z) = fjwm (23)
=
Substituting (23) into (11) gives
| dnd eyt as
= ZZNN [/ Bp(x)pq(x) dw] (24)
=1

and it follows from the definition of the matrix B in (10) that the
vector J whose elements are J(z,) can be expressed as

s = juuBJ (25)

Since J, = 0 if z, > S the problem can be reduced to a
set of independent matrix equations, with each set of equations
corresponding to one Strip.

III. NUMERICAL CONSIDERATIONS

_ In computing the data presented in this and the following section,
the numerical solution outlined in the Section IT was implemented
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Fig. 2. (a) Convergence for the single centered strip.(w/a=0.2, Af/a=1.25).
(b) CPU time required to run the single strip problem.(w/a=0.2, A\/a=1.25).

using piecewise-linear basis functions in (6). The nodes. defining the
element boundaries along the z-axis were distributed non-uniformly,
in a somewhat ad hoc manner, according to the following set of
guidelines:

+ The node distribution is governed by the local behavior of the
solution, i.e. the regions of the x-axis where the solution and/or
its derivatives vary rapidly or exhibit singularities must undergo
fine discretization, while coarser meshes can be placed over the
domiain portions with slower solution variation. In finite ele-
ment solutions employing low-order piecewise-polynomial basis
functions the node placement around singularities is particularly
important, since it ultimately determines the rate of convergence
[61.

+ In the semi-discrete approach, the finite element approximation
is introduced only in the variable x. Therefore it is the z-
variation of the solution which determines the node distribution.
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Fig. 3. Normalized inductance for the single centered strip as a function of
strip width. A/a = 1.25.

For the problem at hand, the most severe behavior in the solution
occurs close to the edges of the strip discontinuities, where
the first « -derivative of the electric field parallel to the edge
becomes singular in the manner dictated by the edge condition.
Therefore, it is important to introduce a graded mesh in the
vicinity of the strip edges.

+ The construction of a non-uniform mesh on a given interval can
be accomplished by introducing a mesh-function, i.e. a mapping
from a uniform to a graded mesh. For the problem at hand a
graded mesh was constructed by initially sub-dividing the z-
domain (0 < = < a) into intervals delimited by the strip edges.
The discretization on each interval was carried out by means of
the following mesh-function

Lgr = Zer +

where

zqr-location of the g-th node on the r-th interval;

Zcr, Az.-center and length, respectively, of the rth interval;

a-empirical exponent determined to optimize the convergence rate;

N, total number of nodes on the rth interval.

For the two interval adjacent to the waveguide lateral walls we set
z. = 0,a, since the solution is well behaved at x = 0, a.

Note, with the exception of the parameter «, this meshing algo-
rithm was employed in [10].

The rate of convergence for a model problem is illustrated in
Fig. 2(b). Optimal convergence for this and subsequent calculations
was obtained with o = 0.7. A closer examination of the curve reveals
that the rate of convergence is O(1/N?). In Fig. 2(a) the CPU time
required to execute the model problem for a given number of mesh
nodes is graphed. The machine used was a DecStation 3100 with
16Mb of RAM. Approximately 70% of the execution time was spent
in solving the eigenvalue problem in (13).

IV. RESULTS

The normalized inductance calculated using the SDFEM is shown
in Figs. 3-5 for three basic problems. The results are compared
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Normalized inductance for the inductive window as a function of
window size. A/a = 1.25.
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Fig. 5. Normalized inductance for two symmetrically located strips.
Afa =1.591,w/a = 0.055.

with a moment method based numerical solution [7]. Clearly, the
discrepancy between the solutions is minimal.

To verify the validity of the solution further, current distribution on
the inductive strips was calculated using (25) and is shown in Fig. 6.
Note that the singularity in the current distribution at the strip edges,
which is expected on the basis of the edge condition, is captured in
the numerical solution.

It is important to note that the eigenvalue problem of (13) depends
only on the physical geometry of the waveguide and not on the
frequency of the propagating mode. Therefore the frequency response
of a waveguide can be calculated efficiently after having solved the
bulk of the numerical problem, namely the eigenvalue equation (13),
only once.
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Fig. 6. Current distribution on two symmetrically located strips. A\/a=1.591.

V. CONCLUSIONS

We have illustrated the applicability of the SDFEM to a specific
set of rectangular waveguide discontinuity problems. The numerical
properties of the solution were studied and its accuracy verified.
Further work in this area should now be done to apply the SDFEM to
problems with thick and/or cascaded discontinuities in waveguides of
arbitrary cross-section. In these cases the general TM,,,,, and TE;.»
modes should be included in the analysis.
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Accurate and Efficient Computation of Dielectric
Losses in Multi-Level, Multi-Conductor
Microstrip For CAD Applications

James P. K. Gilb and Constantine A. Balanis

Abstract— Accurate and efficient computation of dielectric losses in
complex microstrip structures is important in the computer-aided design
of microwave and millimeter-wave integrated circuits. The proposed
approach can be used in lieu of lossy, full-wave solutions to provide
accurate and efficient data for the CAD of multi-level, multi-conductor
MIC and MMIC structures. This new application gives results that are as
accurate as lossy full-wave techniques over a wide range of frequencies,
including the dispersive region. In addition to providing accurate results,
this method is up to three times faster, depending on the number and
type of substrates or superstrates. Results are shown for various multi-
conductor, multi-level structures which compare well with the lossy,
full-wave approach and require significantly less computer time.

I. INTRODUCTION

One of the most important goals in the computer modeling of
MIC’s and MMIC’s is to provide highly accurate simulations in
order to reduce the number of design iterations. Accurate modeling of
all of the characteristics of multi-level, multi-conductor structures is
necessary in the quest for single iteration design of complex circuits.
At the same time, to facilitate the design process, these accurate
methods must also provide results as quickly as possible. Current
techniques available for the calculation of the dielectric attenuation
coefficient compromise on either accuracy or speed, and many are
not suitable for complex structures. In addition, lossy full-wave
techniques usually require completely different subroutines and utility
libraries. A new application of an old formulation is presented here
which provides accurate results for the dielectric loss coefficient for
multi-level, multi-conductor structures in about one-third the time
required for a lossy, full-wave computation. This new approach is
ideally suited for CAD applications since it uses currently available
lossless techniques and does not require special subroutines and
software libraries.

Various full-wave methods have been used to compute the di-
electric loss in multi-layer, multi-conductor structures. The Spectral
Domain Approach (SDA) has been used, both with a perturbational
formula for the attenuation coefficient [1] and by formulating the
problem with a complex dielectric constant [2]-[4]. Other full-wave
techniques that have been used include the space-domain, moment
method [5], and the Finite-Difference Time-Domain (FDTD) [6]. All
of these techniques give accurate results for the dielectric loss in a
general microstrip structure, but they require a significant amount. of
computational effort. An aliernate approach is to use an approximate
formula for the dielectric loss coefficient. One of the most widely
used formulas for computing the dielectric attenuation coefficient
is the one advanced by Schneider [7]. This formula has long been
used with approximate formulas for e..g to compute the dielectric
attenuation coefficient, «q. It was recently shown that this formula
gives results that are as accurate as those obtained with a lossy
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