
IEEE Transactions oNMIcRowAvE THEoRYAND Techniques, voL.41, No. 3, MARCH 1993 523

-165

i
,..

.,
f=15 GHz

Fig. 3. Variation of &with respect to the eccentricity.

10 GHz and 1-5 GHz. Notice that strong reflections are observed as

the eccentricity becomes comparable tothemicrostnp line widths.

V. CONCLUSIONS

A frequency-dependent analysis of the shielded microstrip asym-

metric step discontinuity has been presented. The asymmetric nature

of the discontinuity requires the investigation of the spectrum of both

odd and even hybrid modes. Numerical results have been presented

and the effect of the eccentricity on the scattering parameters has been

depicted. In principal the same method can be employed to treat other

types of asymmetric discontinuity problems.
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Semi-Discrete Finite Element Analysis of Zero-Thickness

Inductive Strips in a Rectangular Waveguide

Devin Crawford and Marat Davidovitz

Abstract—A semi-discrete finite element method is applied to determine

the network parameters for zero-thickness inductive discontinuities in a
rectangular guide. The solution obtained is computationally efficient amd
is applicable under multi-mode conditions. Moreover, after obtaining the

solution for a given geometry at a specific frequency, further frequency

analysis for the same geometry requires only nominal addkional recalcu-
lation. Convergence properties of the solution are studied and comparison
with published data is carried out to verify the solution accuracy.

I. INTRODUCTION

A variant of the FEM, the Semi-Discrete Finite Element Method
(SDFEM) utilizes the properties of the FEM in one plane of the
domain, while the solution along the remaining dimension is found
analytically. Thus, the computational burden associated with this
method is considerably smaller than that for a fully-discrete FEM
solution. Moreover, in the framework of the SDFEM, radiation
condition can be rigorously applied along certain directions in a
Cartesian coordinate system. Therefore, the SDFEM is suited to
problems involving dkcontinuities in a plane. Here we examine
the problem of zero-thjckness inductive discontinuities in a wave-
guide. This problem has been extensively studied in the past [1], [2],
[3], [4], [7], and therefore is a good model problem with which to
verify the proposed method, as well as examine its characteristics in
detail.

Section II of this paper deals with the theoretical formulation of
the problem, based on the scalar Helmholtz equation for the TE field.
In Section III the numerical issues of dk.cretization, convergence rind
execution time are examined. In section IV, we compare our results
with published data [7] and finally, Section V contains conclusions
and suggestions for further work.

II. FORMULATION OF THE PROBLEM

Consider a general, infinitesimally thin inductive diaphragm shown

in Fig. 1. It is assumed that the TEIO mode is incident from z <0. k

is well-known [5] that for thk type of discontinuity only higher-order

TE~o modes are excited. Therefore the scattered TE field satisfies the
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Fig. 1. Description of the problem geomehy.

following scalar Helmholtz equation

(~+axz’
where @(a, z) denotes the y component of the reflected electric field,

and Jv (x) is the current induced on the discontinuity by the incident

wave.

The finite element method is used to discretize the field equations in

the plane transverse to the direction of propagation in the waveguide.

Since the field is independent of y, only 1-dimensional discretization

along the a axis is necessary. The dependence of the solution along

the z direction will be determined analytically.

The following boundary conditions will be applied to the Helmholtz

equation at various stages of the formulation

q$(z, z)= O;2=0, a (2)

(3)

where S = Uz S,, and S~ is the surface of the ith conducting strip.

Equation (3) simply imposes the condition requiring the sum of the

incident and reflected fields to vanish on the diaphragm.

Multiplying (1) by a weight function @(z) and integrating over the

cross-section, (1) can be expressed in its weak form [8] [9] as follows

(4)

Equation (4) will serve as the basis for construction of the

SDFEM solution. For reasons that will become apparent shortly, it is

convenient to alter (4) through integration by parts

In the finite element nomenclature this equation constitutes the weak,

symmetric form of the original differential formulation. The name

stems from the symmetry between the unknown ~ and the weight

function ~ in the dkcretized portion of the domain.

The finite element solution can be written in terms of a set of basis

functions {@P(z), p = O, N + 1} which span the z-domain. The

basis functions are defined piecewise by low-order polynomials over

a mesh, and are normalized so that @r(zq ) = 6Pq, where 6P~ is the

Kronecker delta, and Zq is the z position corresponding to node g.

An approximate solution can be expressed in terms of the basis

functions as

(6)

*=O

where

Vq(z)-value of the F.E.M. solution at (z~, z),

4* (z)-the q-th basis function,

@(z)-the vector whose elements are 4,(z),

v(z) -the vector whose elements are Vq( z), and tilda denotes

transposition.

We will also take

Application of the essential boundary conditions of (2) requires that

w(z) = WN+l(Z) = o

eliminating the term (tkj/tlz)@ IH in (5).

Substitution of expressions (6) and (7) into (5) yields the following

matrix equation

(~dzv(z)~ +kzv(z))–Av(z) = ti(Z)S (8)

where A and B are N x N matrices, and s is a vector whose

elements are defined as follows:

(9)

/

a

b,, = 4,(x)4,(z) dx (lo)
o

J

a
Sp = jW/LJv(o)&(z) dx (11)

o

The N differential equations in the matrix equation (8) must

now be decoupled. In order to accomplish this task, let the linear

transformation matrix T be defined by

v(z) - TV(Z) (12)

where V denotes the transformed solution.

In order to decouple the equations, T must satisfy the generalized

eigenvalue problem

AT= BTK (13)

where the diagonal matrix K has the eigenvalue entries &. Trans-

forming equation (8) to the principle axes yields the following iV

uncoupled differential equations

d2V(z)
~ + k’ti(z) – KV(Z) = 8(z)s (14)

where

~ = T–~B–l$ (15)

and kz = OJzpc.

After solving the equations and applying the radiation conditions

at z E ha, we can express V(z) as

v = 2(2)s (16)

where 2(.z ) is a diagonal matrix with elements

_e–’hlzl
2,, =

27P
(17)

(18)
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Ifthetransfonnation matrix Tisnomtalized such that ~l?T= 1,

then from (12), (15) and (16) it follows that

v(z) = TZ(Z)T–IB– IS= Z%-(z)i’s (19)

In order to express v(z) in a simple form, let Z(z) = T2(z)~.

The boundary conditions stated in (3) can now be applied to solve

for s.

The boundary condition of eq. (3) is applied by defining the vector

~o that has elements

{

sin (7rxp/a) if xP C S
db,(%l, 0) = o (20)

ifzP3S

Applying (6) and (19), and the definitions of Z(z) and ~c to (3)

we see that

–(($0 = 2(0)s (21)

which is actually a matrix equation in M unknowns, where M is the

number of nodes in S. The vector s can be determined by extracting

from Z(0) the rows corresponding to the non-zero elements of ~o

and solving for the non-zero elements of s. Once s is found, the

value of the reflected field at any point (z, z) can be determined by

substituting s into (6) and (19)..

The reflection coefficient is extracted by projecting the finite

element solution onto the TE1o mode, yielding

I ()q$(z, O) sin ~ dx
a

,=O; ~,a

sin2 ~ dx
o a

Finally, we wish to model the discontinuity in terms of a lumped

element, namely, as an inductor. From transmission line theory, the

normalized susceptance is given by

mm
(22)

The current on the strips can also be found by first expressing it

as a line~ combination of the same basis functions that were used

to define the solution, that is

N
J.(z) = ~ ‘Jd,(~) (23)

q=l

Substituting (23) into (11) gives

and it follows from the definition of the matrix B in (10) that the

vector J whose elements are J (ZP ) can be expressed as

s = jwwBJ (25)

Since Jp =OifxP 3 S the problem can be reduced to a

set of independent matrix equations, with each set of equations

corresponding to one strip.

III. NUMERICAL CONSIDERATIONS

In computing the data presented in this and the following section,

the numerical solution outlined in the Section II was implemented

525
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Fig. 2. (a) Convergence for the single centered strip. (w/a= 0.2, A/a= 1.25).
(b) CPU time required to run the single strip problem.(w/a = 0.2, A/a = 1.25).

using piecewise-linear basis functions in (6). The nodes defining the

element boundaries along the x-axis were distributed non-uniformly,

in a somewhat ad hoc manner, according to the following set of

guidelines:

●

●

The node distribution is governed by the local behavior of’ the

solution, i.e. the regions of the x-axis where the solution andlor

its derivatives vary rapidly or exhibit singularities must undergo

fine discretization, while coarser meshes can be placed over the

domain portions with slower solution variation. In finite ele-

ment solutions employing low-order piecewise-polynomial basis

functions the node placement around singularities is particularly

important, since it ultimately determines the rate of convergence

[6].

In the semi-discrete approach, the finite element approximation

is introduced only in the variable z. Therefore it is the z-

variation of the solution which determines the node distribution.
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Fig. 3. Normalized inductance for the single centered strip as a function of
strip width. Ala = 1.25.

For the problem at hand, the most severe behavior in the solution

occurs close to the edges of the strip discontinuities, where

the first z -derivative of the electric field parallel to the edge

becomes singular in the manner dictated by the edge condition.

Therefore, it is important to introduce a graded mesh in the

vicinity of the strip edges.

● The construction of a non-uniform mesh on a given interval can

be accomplished by introducing a mesit-function, i.e. a mapping

from a uniform to a graded mesh. For the problem at hand a

graded mesh was constructed by initially sub-dividing the x-

domain (O < z < a) into intervals delimited by the strip edges.

The discretization on each interval was carried out by means of

the following mesh-function

Ax, ~q
Xgr = xc, + —

2
Cosa —

N,

where

Zq, -location of the q-th node on the r-th interval;

zC,, &,-center and length, respectively, of the r-th interval;

cwempirical exponent determined to optimize the convergence rate;

N, total number of nodes on the rth interval.

For the two intervaf adjacent to the waveguide lateral walls we set

z. = O, a, since the solution is well behaved at .x = O,a.
Note, with the exception of the parameter a, this meshing algo-

rithm was employed in [10].

The rate of convergence for a model problem is illustrated in

Fig. 2(b). Optimal convergence for this and subsequent calculations

was obtained with a = 0.7. A closer examination of the curve reveals

that the rate of convergence is 0(1 /N2 ). In Fig. 2(a) the CPU time

required to execute the model problem for a given number of mesh

nodes is graphed. The machine used was a DecStation 3100 with

16Mb of RAM. Approximately 70% of the execution time was spent

in solving the eigenvalue problem in (13),

IV. RESULTS

The normalized inductance calculated using the SDFEM is shown

in Figs. 3–5 for three basic problems. The results are compared
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Fig. 5. Normalized inductance for two symmetrically located strips.

Ala = 1.591, wJa = 0.055.

with a moment method based numerical solution [7]. Clearly, the

discrepancy between the solutions is minimal.

To verify the validity of the solution further, current dktribution on

the inductive strips was calculated using (25) and is shown in Fig. 6.

Note that the singularity in the current distribution at the strip edges,

which is expected on the basis of the edge condition, is captured in

the numerical solution.

It is important to note that the eigenvalue problem of(13) depends

only on the physical geometry of the waveguide and not on the

frequency of the propagating mode. Therefore the frequency response

of a waveguide can be calculated efficiently after having solved the

bulk of the numerical problem, namely the eigenvalue equation (13),

only once.
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Fig. 6. Current distribution on two symmetrically located strips. Ala= 1.591.

V. CONCLUSIONS

We have illustrated the applicability of the SDFEM to a specific

set of rectangular waveguide discontinuity problems. The numerical

properties of the solution were studied and its accuracy verified.

Further work in this area should now be done to apply the SDFEM to

problems with thick and/or cascaded discontinuities in waveguides of

arbitrary cross-section. In these cases the general TMm. and TEmn

modes should be included in the analysis.
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Accurate and Efficient Computation of Dielectric

Losses in Multi-Level, Multi-Conductor

Microstrip For CAD Applications

James P. K. Gilb and Constantine A. Balanis

Abstract— Accurate and efficient computation of dielectric losses in
complex microstrip structures is important in the computer-aided design

of microwave and millimeter-wave integrated circuits. The proposed

approach can be used in fieu of Iossy, full-wave solutions to provide
accurate and efficient data for the CAD of multi-level, multi-conductor
MIC and MMIC structures. This new application gives results that areas

accnrate as Iossy full-wave techniques over a wide range of frequencies,
includlng the dkpersive region. In add]tion to provid]ug accurate results,
this method is up to three times faster, depending on the number and
type of substrates or superstrates. Results are shown for various multi-

conductor, multi-level structures wh]ch compare well with the 10SSY,
frdl-wave approach and require significantly less computer time.

I. INTRODUCTION

One of the most important goals in the computer modeling of

MIC’S and MMIC’S is to provide highly accurate simulations in

order to reduce the number of design iterations. Accurate modeling of

all of the characteristics of multi-level, multi-conductor structures is

necessary in the quest for single iteration design of complex circuits.

At the same time, to facilitate the design process, these accurate

methods must also provide results as quickly as possible. Current

techniques available for the calculation of the dielectric attenuation

coefficient compromise on either accuracy or speed, and many are

not suitable for complex structures. In addition, lossy full-wave

techniques usually require completely different subroutines and utility

libraries. A new application of an old formulation is presented here

which provides accurate results for the dielectric loss coefficient for

multi-level, multi-conductor structures in about one-third the time

required for a lossy, full-wave computation. This new approach is

ideally suited for CAD applications since it uses currently available

lossless techniques and does not require special subroutines and

software libraries.

Various full-wave methods have been used to compute the di-

electric loss in multi-layer, multi-conductor structures. The Spectral

Domain Approach (SDA) has been used, both with a perturbational

formula for the attenuation coefficient [1] and by formulating the

problem with a complex dielectric constant [2]-[4]. Other full-wave

techniques that have been used include the space-domain, moment

method [5], and the Finite-Difference Time-Domain (FDTD) [6]. All

of these techniques give accurate results for the dielectric loss i~n a

general microstrip structure, but they require a significant amount of

computational effort. An alternate approach is to use art approximate

formula for the dielectric loss coefficient. One of the most widely

used formulas for computing the dielectric attenuation coefficient

is the one advanced by Schneider [7]. This formula has loug been

used with approximate formulas for e,,fi to compute the dielectric

attenuation coefficient, ad. It was recent] y shown that this formula

gives results that are as accurate as those obtained with a lossy
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